PDF] Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses

Description

It can be shown that SMA slit dampers exhibit many structural advantages in terms of ultimate strength, moderate energy dissipation and recentering capability. In this paper, the superelastic shape memory alloy (SMA) slit damper system as an alternative design approach for steel structures is intended to be evaluated with respect to inelastic behavior simulated by refined finite element (FE) analyses. Although the steel slit dampers conventionally used for aseismic design are able to dissipate a considerable amount of energy generated by the plastic yielding of the base materials, large permanent deformation may occur in the entire structure. After strong seismic events, extra damage repair costs are required to restore the original configuration and to replace defective devices with new ones. Innovative slit dampers fabricated by superelastic SMAs that automatically recover their initial conditions only by the removal of stresses without heat treatment are introduced with a view toward mitigating the problem of permanent deformation. The cyclically tested FE models are calibrated to experimental results for the purpose of predicting accurate behavior. This study also focuses on the material constitutive model that is able to reproduce the inherent behavior of superelastic SMA materials by taking phase transformation between austenite and martensite into consideration. The responses of SMA slit dampers are compared to those of steel slit dampers. Axial stress and strain components are also investigated on the FE models under cyclic loading in an effort to validate the adequacy of FE modeling and then to compare between two slit damper systems. It can be shown that SMA slit dampers exhibit many structural advantages in terms of ultimate strength, moderate energy dissipation and recentering capability.

PDF) Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses

PDF) Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses

REPORT ON CHARACTERIZATION OF SHAPE MEMORY ALLOY FOR VIBRATION ATTENUATION IN SMART STRUCTURES

Coupled Finite Element Simulation of Shape Memory Bending Microactuator

PDF) Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA) Bending Bars Used for Seismic Restrainers

Hybrid Self-Centering Connection Employing Energy Dissipation Sequences: Experimental Study and a Structural Seismic Demand Perspective, Journal of Structural Engineering

PDF] Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses

Fe-SMA–Based Shear Panel Damper: Solution Treatment, Design, and Seismic Performance, Journal of Structural Engineering

PDF] Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses

Applied Sciences, Free Full-Text

PDF] Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses

Full article: Multiparameter Optimization Design of Self-centering Friction Damper Using Shape Memory Alloy Bars

Full article: Multiparameter Optimization Design of Self-centering Friction Damper Using Shape Memory Alloy Bars

The Effect of slit-friction hybrid damper on the Performance of Dual System

The Effect of slit-friction hybrid damper on the Performance of Dual System

$ 21.00USD
Score 4.5(639)
In stock
Continue to book